
Abstract

This document is an extension of the User’s Manual and the inline documentation
generated from the FWEB source files. Its objective is to provide additional details
on critical aspects of the code’s operation that needed by future developers.

Developer’s Guide for DEGAS 2

October 26, 2020

2

Chapter 1

Geometry

1

Chapter 2

Scoring

2.1 Introduction
The estimators in DEGAS 2 are calculated by the routines in score.web, which
are invoked during tracking. At the end of each flight, the resulting data are accu-
mulated into the global arrays described in the statistics class (package abbrevia-
tion sa) via the subroutines in stat.web.

The data accumulation process takes place over a range of scales to optimize
performance on massively parallel platforms. The basic breakdown is:

flt for “flight”. This always refers to a single flight.

frag for “fragment”. To facilitate load balancing, only a fraction (or “fragment”)
of the total number of flights per processor are sent at a time to each process.
As each process completes, an additional fragment is sent until all have been
completed.

fin for “final”. In the simplest case, this refers to the global accumulation of
data from all processes. Again, in the simplest case, the data are actually
accumulated directly in an array from the output class.

This process is complicated by two additional optimizations. First, as is doc-
umented in the statistics class, these arrays may be compressed, especially at the
flt level, to reduce the amount of data transmitted. Second, in runs on larger ma-
chines (say, > 100 cores or processes) fragments are accumulated into intermedi-
ate “final” arrays over groups of processors to reduce the number of accumulations
that must be performed by the master process, avoiding network transmission col-
lisions. The machinery facilitating this is contained in degasinit.web.

2

2.2 Basic Expressions
The sources of neutral particles to be simulated in a given DEGAS 2 run are bro-
ken up into “groups” according to their physical nature, e.g., “plate recycling”,
“gas puff”, etc., as described in the sources class. Because the number of flights
and total particle current associated with each source group are specified inde-
pendently by the user, the data for each group are accumulated separately and are
available by themselves within the output arrays.

The fundamental expressions used in the data accumulation process are, thus,
for a specific source group i. The other principal indexing parameters for the out-
put arrays are the geometric zones, z, and the tallies, as contained in the tally class.
To minimize confusion, we do not introduce any explicit index for the latter; the
following expressions apply independently for each tally. The first accumulated
moment, to be associated with the mean in the end is:

Si1(z) =
Ni∑
j=1

ρj

∑
k∈z

ξj,k

 / Ni∑
j=1

ρj, (2.1)

where: i is the source group index, the “1” refers to the first statistical moment,
j runs over all of the Ni flights in group i, ρj is the relative statistical weight of
flight j, k is the list of events scored by flight j (e.g., collisions) in zone z, and ξj,k
is the estimator value (see below) for this tally recorded by flight j during event k.
The statistical weight ρj ≡ 1 in most cases, but can be set otherwise by the user
to effect importance sampling via the input arrays source segment rel wt.
Note that this quantity is fixed for a given flight (indeed, is the same for all flights
launched from that source segment) and is distinct from the statistical weight
[pt w(fl current(x)) in subroutine follow], designated by w in the esti-
mator expressions below, which may vary during flight tracking, but always has
an initial value of w = 1.

Estimators are discussed in greater generality in the User’s Manual. Here, we
write out the ones of greatest interest to provide adequate context for the statistical
moment expressions. First, the estimator most commonly used in compiling test
particle data is the track length estimator,

ξTLE
g = w

1− exp(−σitV)

σi
g, (2.2)

where tV is the time the particle track spent in volume V, w = weight at start of
the time step. Note that in the limit σitV � 1, [1− exp(−σitV)]/σi → tV , so that

3

estimator scales directly with the time spent in a zone. For longer time intervals,
e.g., as might be the case when other reaction rates are small, the exponential
factor effectively accounts for weight reduction along the track. The function g
can be a test particle attribute, such as mass, momentum, energy, or reaction-
related, e.g., ion momentum source due to charge exchange. Volumetric plasma
sources, such as the latter, enter the track-length estimator as averages over the
background distribution.

The second type of estimator is the collision estimator,

ξCE
g =

∑
ms

wms

g

σs
, (2.3)

where the sum is over ms, all scattering collisions within V , and is equivalent
to the

∑
k in Eq. (2.1). The quantity wms is the weight at msth collision. If

suppressed absorption is being used, as is normally the case, the particle weight
will decrease between the collisions. Again, g is a test particle attribute.

There is an analogous expression for the collision estimator associated with a
particular reaction,

ξCE
g =

∑
mj

wmj

g

σj
, (2.4)

where the sum is now over mj collisions of reaction j within V , The function
g is some quantity related to the reaction and is likely something known only at
collisions. One example of such a quantity would be the energy source due to
H2 dissociation (i.e., the energy exchange is determined only once the product
velocities have been determined).

The equivalent expression for the second moment is:

Si2(z) =
Ni∑
j=1

ρj

∑
k∈z

ξj,k

2

/
Ni∑
j=1

ρj −

 Ni∑
j=1

ρj

∑
k∈z

ξj,k

 / Ni∑
j=1

ρj

2 . (2.5)

While this expression is very close to that for the variance appearing in statistics
textbooks, it is not suitable for the multi-level data accumulation used by DEGAS
2. How one would break up the sum in the numerator of Eq. (2.1) into smaller sets
(fragments) of flights j is clear. To do likewise for the second moment, we need
to instead work with:

Ni∑
j=1

ρj

∑
k∈z

ξj,k

2

/
Ni∑
j=1

ρj = Si2(z) +

 Ni∑
j=1

ρj

∑
k∈z

ξj,k

 / Ni∑
j=1

ρj

2 . (2.6)

4

2.3 Accumulating Data
We now motivate the specific expressions used to accumulate data from an indi-
vidual flight into a fragment, and a fragment into a final total. In the interest of
clarity, we introduce some simplified notation:

∑Ni
j=1 ρj → w, Si1(z) → S1, and

Si2(z)→ S2. The subscript i in the following represents “incremental” data (e.g.,
an individual flight), b represents the “base” data (e.g., the fragment containing
data from earlier flights); the result of the accumulation will be new base data,
indicated with a prime. The familiar form for the first moment is:

S ′1b = (wiS1i + wbS1b)/(wi + wb), (2.7)

with the new base weight being:

w′b = wi + wb. (2.8)

But, the code actually uses an equivalent form to maximize numerical accuracy:

S ′1b = S1b + (S1i − S1b)
wi

wi + wb
. (2.9)

The analogous expression following from Eq. (2.6) is:

(S ′2b + S ′21b)w
′
b = (S2b + S2

1b)wb + (S2i + S2
1i)wi. (2.10)

Thus,
S ′2b = [(S2b + S2

1b)wb + (S2i + S2
1i)wi − S ′21bw′b]/w′b. (2.11)

The equivalent form that is coded up in stat.web is:

S ′2b = [S2bwb + S2iwi + (S1i − S1b)(S1i − S ′1b)wi]/w′b. (2.12)

The equivalence of Eqs. (2.11) and (2.12) can be demonstrated most readily by
adding and subtracting S1b(S1i − S ′1b)wi inside the square brackets of Eq. (2.11)
and using Eq. (2.7) for S ′1b. Again, this form improves numerical accuracy, e.g.,
in the case where S1i ' S1b.

To see this, consider two limiting cases. First, look at the one in which the
increment is much smaller than the base value: S1i = εS1b, where ε � 1. We
insert this in Eqs. (2.11) and (2.12), and drop second order terms in ε relative to
higher order terms (as if lost due to finite precision). Note that we expect wi ≤ wb

5

in almost all cases. since the S2 terms are the same in these equations, we work
only with the S1 terms. So, the familiar arrangement yields:

S2
1bwb + S2

1iwi − S ′21bw′b (2.13)
→ S2

1b(wb + ε2wi)− S2
1b(wb + εwi)

2/(wb + wi)(2.14)

= S2
1b[wb + ε2wi −

w2
b

wi + wb
(1 + ε

wi
wb

)2] (2.15)

' S2
1b[wb −

w2
b

wi + wb
(1 + 2ε

wi
wb

)] (2.16)

= S2
1b

wiwb
wi + wb

(1− 2ε). (2.17)

The equivalent terms from Eq. (2.12):

(S1i − S1b)(S1i − S ′1b)wi (2.18)

→ (ε− 1)S1b[εS1b − S1b
wb

wi + wb
(1 + ε

wi
wb

)](2.19)

= S2
1b

wiwb
wi + wb

(ε− 1)2 (2.20)

' S2
1b

wiwb
wi + wb

(1− 2ε), (2.21)

i.e., the same as Eq. (2.17).
However, if S1i = (1 + ε)S1b,

S2
1bwb + S2

1iwi − S ′21bw′b (2.22)

→ S2
1b[wb + (1 + ε)2wi]− S2

1b(wi + wb)(1 +
εwi

wi + wb
)2(2.23)

' S2
1b[wb + (1 + 2ε)wi − (wi + wb)(1 +

2εwi
wi + wb

)](2.24)

→ 0! (2.25)

But, with the modified form,

(S1i − S1b)(S1i − S ′1b)wi (2.26)

→ εS1b[(1 + ε)S1b − S1b(1 +
εwi

wi + wb
)]wi(2.27)

= ε2S2
1bwbwi. (2.28)

That is, because S1i − S1b appears in both Eqs. (2.9) and (2.12), the factors of ε
enter via separate terms, reducing round-off errors.

6

2.4 Implementation in the Code
The flexibility and generality of the scoring machinery in DEGAS 2 can make
relating the expressions in the previous sections to the lines in the code challeng-
ing. Virtually all of the scoring in DEGAS 2 begins in the tracking loop of sub-
routine follow with a call to one of: score sources, score reaction,
score test, or score sector (which invokes score diagnostics). Note
that score reaction and score sector also serve as the starting point for
processing the corresponding action indicated by its name. This was also true
of score sources until the option of sampling on the master processor was
implemented.

For all of the scoring routines utilizing multiple estimator types (i.e., all except
score sector / score diagnostics), the first argument is a macro con-
stant indicating the type of estimator to be used for that call. Note that score sources
is also called with the post-processing estimator in subroutine post process source scores.

The routines score test and score reaction compute the estimators
described in Sec. 2.2. The second argument for these represents the time-like
quantity in Eqs. (2.2) - (2.4). In particular, for the calls using the track length
estimator, tl est track, the variable t fac is

tfac =
1− exp(−σitV)

σi
. (2.29)

For the calls with the collision estimator, tl est collision, the second ar-
gument is either the inverse of the total scattering rate, σs (other rate in the
code), as in Eq. (2.3), or the rate of a single process, σj (rate[i] in the code),
as in Eq. (2.4).

All of the argument lists for the scoring routines contain an entry represent-
ing the current flight or, in the case of score sector, the entire flight stack.
In the latter case, the processing of the products of plasma-material interactions
(PMI) is handled in score sector, altering the flight stack. This is analogous
what is done by the collision estimator call to score reaction except that it
returns the list of products (and reagents) in the particle array, prod, which is
explicitly processed in subroutine follow into modifications of the flight stack,
fl pointer(x) and fl current(x). In terms of scoring, the current flight
provides the weight factor, w, in Eqs. (2.2) - (2.4).

All of the scoring routines also require the estimator factors argu-
ment, a 1-D array with an entry for each of the tallies. This dynamic array
is actually allocated in subroutine do flights master so that it can also

7

be used in the post-process scoring routines as well as in the scoring routines
called by subroutine follow. In the simplest cases of score sources and
score diagnostics (called by score sector), the nominal content of
each entry in estimator factors is the weight of the current particle. In
score test and score reaction, this is multiplied by the time-like quan-
tity discussed above and represented locally by the variable est fac.

The estimator factors array also enforces the estimator dependence
of each tally contained in the tally est test and tally est reaction
arrays for test and reaction / source scores, respectively. These arrays provide an
overall 1 (0) factor if the current estimator is (is not) being used for a particular
test tally or reaction / source tally for a particular reaction or source type (see the
tally class). If all of the estimator factors for the current score type are
zero, the local flag need scores will be set to false and the remainder of the
scoring process will be bypassed.

Assuming that is not the case (i.e., need scores is true), the quanti-
ties corresponding to g in Eqs. (2.2) - (2.4) are computed; these are stored in
the local array scoring data. The length of this array is the macro constant
scoring data max, defined as part of the tally class in tally.hweb. The
nominal content of scoring data is the set of dependent variables contained
in the problem class, i.e., the macro parameters pr var mass, etc. A key fea-
ture of this list is that it is extended as a part of problemsetup, e.g., to han-
dle user-specified emission lines, with the total number of entries being given by
pr var0 num. During tallysetup, the assertion that scoring data max
> pr var0 num is checked. The specific reason that the length of scoring data
is not set to pr var0 num instead has been forgotten!

Subroutine test score is the simplest of the scoring routines. The prin-
cipal values of the variable g, computed in subroutine test scoring data,
are the particle’s mass, momentum vector, and energy. The pr var xy stress
variable, mv1v2, is also provided for use in the Couette Flow example. Note that
additional elements of the stress tensor could be compiled in the same manner, if
needed for a future application.

In subroutine score reaction, the task of filling the scoring data ar-
ray is handled by the “collision” routines. When a collision type estimator is being
processed, an actual collision routine, which results in modifications to the flight
stack, is called via subroutine pick reaction. For track and post-processing
estimators, the track-length versions of the reaction routines are invoked via sub-
routine pick track reaction. These have no impact on the characteris-
tics of the current flight; in fact, subroutine follow asserts that these calls to

8

score reaction return no products. All of these reaction routines provide the
entries in scoring data corresponding to the changes in “problem species”
(the union of the test and background species lists) mass, momentum vector, and
energy. For those processes that result in the emission of photons, e.g., ionization
and dissociative excitation, values for the emission rate and velocity vector of the
emitting species are included in the scoring data array.

Each of the source types has a corresponding “data” routine, e.g., subroutine
puff data, that is called from subroutine score sources and fills in the
scoring data mass, momentum vector, and energy sources for it. Subroutine
plate data handles both the so plate and so plt e bins types. A re-
combination source is handled more like a reaction, however, in that it provides
scoring data for multiple species and also results in light emission. To under-
score this point, the recombination data subroutine is actually kept in the
collide.web file.

2.4.1 Sector and Diagnostic Scoring
The scoring of sectors and diagnostics in score sector is complicated first by
the presence of two sectors at a zone boundary and second by the need to track
mass, momentum, and energy both into and out of the sectors. The subroutine
first sets sector1 to lc sector and sector2 to lc sector next for the
current flight. Their values will be used to determine if the current flight is at an
exit, in which case the current flight is terminated immediately. Or if it is at a wall
/ target interface, in which case a PMI is processed. The comment after the setting
of sector1 and sector2 described the objectives of the next three lines, but
understanding them is crucial to comprehending the subsequent subroutine calls:

nprod = 0

Anticipates the possibility of a purely diagnostic interface in which no PMI or exit
is processed; i.e., the current flight goes on its way as is.

pt_copy(fl_current(x),prod[0])

Both the process pmi and score diagnostic subroutines operate on prod[0]
(and subsequent elements in the case of a PMI), so it must be a copy of the current
flight particle.

pt_thru_face(fl_current(x))

9

Again, this line anticipates the possibility of a purely diagnostic interface. The
macro invokes lc thru face in location.hweb, which in turn sets lc cell
to lc cell next and likewise for lc sector and lc sector next. As im-
plied by its name, the macro effectively puts the particle on the other side of the
interface. If there is a PMI or the current flight is at an exit, the flight is killed, and
this macro does not matter. This has no impact on the scoring since that is now
going to be done on prod[0].

These lines are followed by a loop over the non-diagnostic sectors; i.e., type
= sc vacuum= 1→ sc exit= 5, which is also the value of sc diagnostic(0)
(see the corresponding macro in the sector class). The way this loop is written
amounts to “overkill” in that both “sector” and “sector next” are tested
and that only three of the five sector types (wall, target, and exit) result in any
action. This structure harks back to earlier incarnations of the “sector” concept.
In the wall and target cases, the requisite PMI is processed.

The operation of PMI related routines is discussed elsewhere (e.g., in the
User’s Manual sections on Recycling and Adding Reactions and PMI), but not-
ing a few details here will help clarify the operation of sectors and diagnos-
tics. Note, first, that the PMI yields may be functions of the test particle inci-
dent angle, θ, measured relative to the surface normal, and cos(θ). The latter is
provided by the function intersection direction, which in turn invokes
surface intersection direction. As is noted there, cos(θ) > 0 means
the particle is leaving that surface and cell.

The velocity of the PMI product is returned by the PMI routines as if the
particle were impinging on the X – Y plane. When these routines return the
product particles to subroutine pick pmi, the outgoing velocity vector is rotated
into the proper local orientation by subroutine surface reflect. This is then
loaded into the velocity of the prod array of each product along with the location
of the incoming product. However, this only amounts to copying its location in
configuration space, ~x, since the next lines of code proceed to set the lc cell to
the products to the incoming lc cell next and vice versa; the same is done for
the sector and zone values. This swap is explained in the comment: the scoring is
performed as if the incoming (outgoing) particle is leaving (entering) the plasma
or vacuum zone and entering (leaving) the solid zone. Once control returns to
subroutine score sector, score diagnostics is called. Before delving
into it, note that upon its return, the pt thru face macro is called for each
product so that each is then labeled as being in a plasma or vacuum zone (and
cell) and is, thus, ready to be tracked. The face and sector values at this point are
incorrect, but these are not needed for tracking and test or reaction scoring.

10

D

D2

out

out

in

in

sector sector_next

sectorsector_next
i_side = 2 1

i_side = 1 2

plasma / vacuum
zone

plasma / vacuum
sector

solid zone

target / wall
sector

Figure 2.1: Schematic for a desorption PMI showing the sector values used by
subroutine score diagnostics.

The values of the sector and sector next for the current and prod-
uct particles when score diagnostics is called are shown schematically in
Fig. 2.1. An outer loop, j = 0→ nprod, cycles through each of the current and
product particles. Inside of this is a loop over all of the tallies of type sector, with
tally number jscore. Yet another loop with index i side considers the two
sides of the interface; as in Fig. 2.1, the values of the local variable sector is set
using either lc sector or lc sector next, likewise for the local variable
zone.

The surface identifier corresponding to sector is obtained from the sector surface
array; this is unique. The number of sectors, count, associated with this surface
then comes from surface sectors. The value of count may be > 1 for
two reasons. First, in 3-D cases a single surface may bound all of the zones con-
structed from a discretization in the toroidal direction. However, only one of those
will have the same zone as the one being scored. More relevant in this case is that
purely diagnostic sectors may have been defined for this surface and zone com-
bination; see the description of auxiliary sectors in definegeometry2d (note
that much of the above description of sectors, etc. is echoed in its preamble and
other documentation).

Because of this latter possibility, yet another loop goes through each index of
the loop looking at one of these sectors, sector number subsector. The key
point of this set of nested loops is to identify which tallies need to be updated at

11

the particle’s location. For this to be the case, three conditions must be satisfied:

1. The “geometry operator” for the tally jscore (e.g., “Wall and Target Counts”;
see the tallysetup documentation) must include one of the sectors subsector
associated with sector.

2. The zone associated with subsector is the same as the current zone
value.

3. The dependent variable for tally jscore is consistent with the “in” / “out”
convention depicted in Fig. 2.1.

If these conditions are met, estimator factors[jscore] is set to the par-
ticle weight; if not, the value is left at the default value of zero. The last of
these three is a key point; this is where the directionality of the diagnostics is
enforced. In principle, this could have been done (and in earlier versions of
the code, was done) in the subsequent subroutines sector scoring data or
handle diagnostics.

At the completion of these loops, but still inside the loop over the current and
PMI product particles, sector scoring data is called to fill in the scoring data
entries for angle, energy, as well as the mass, momentum vector, and energy in
both the “in” and “out” directions. These are actually the same since, again, the
directionality is enforced in subroutine score diagnostics.

2.4.2 Subroutine add scores

At the end of each of the main scoring routines, such as score test, is a
call to subroutine add scores. This is the point at which the information
from this step (score test), collision (score reaction), sector crossing
(score sector), or source sampling (score sources) gets added to the
stat flt array that contains all of the scores generated by the current flight.
Each invocation of add scores is, thus, for a particular type of tally: sector,
test, or reaction; this is the first argument for add scores. The second argu-
ment is a particle; this will be the current particle in the case of score test,
score reaction, and score sources. In score diagnostics, add scores
is called separately for each PMI product (if any; purely diagnostic sectors have no
products with nprod = 0). The third argument is the problem reaction number;
this is non-trivial only for the calls by score reaction and score sources.

12

The index parameters array contains the values of the tallys’ indepen-
dent variables. The corresponding indices are set in the tally class; see also sub-
routine set var list in tallysetup.web.

The main loop in the subroutine is over all tallies, jscore, of the type speci-
fied by the first argument. The first task performed in this loop is a check to see if
“track conversions” (see tally class documentation and tallysetup) are needed for
jscore. Next comes a test to see whether or not the dependent variable for the
score jscore is one of the mass, momentum, or energy change variables (from
a “collision” reaction or a PMI sector). If it is, the start and end points for a loop
over problem species are defined, otherwise, these are set to trivial values. In both
cases, the check data variable is compiled from the corresponding entries in
the scoring data array to determine whether or not its contents are trivial. If
the latter or if the estimator factors value for jscore is zero, the current
loop is exited, potentially saving significant effort.

Should both the estimator factors and check data values be non-
trivial, the geometric aspects of the score are sorted out by subroutine handle geometry
(see tally class documentation. For volume tallies, the value of number segments
is 1 on return and the content of the segments array is just the zone num-
ber of the current particle. For reaction (sector) tallies, handle detectors
(handle diagnostics) is invoked to fill in these data, as well as any associ-
ated “binned” data.

For detectors, the list of “segments” consists of the detector chords associated
with the tally jscore (its “geometry operator” or “geometry ponter”) that have
non-zero contributions from the current zone. If the emission spectrum is being
computed for the tally, the “bins” contain that information. Additional details on
this can be found elsewhere.

The analogous steps for the sector based diagnostics are taken in handle diagnostics.
The structure of this subroutine resembles that of score diagnostics in that
it again examines the sectors on the two sides of the current interface. As noted
above, the number of sectors to be scored on one of those sides may be > 1 due
to the specification of a non-default diagnostic surface there. If no non-default di-
agnostic surfaces have been defined, the returned value of number segments
= 1. Moreover, the associated sector will be part of either a solid or exit zone since
that’s the case for all default sectors. One difference between score diagnostics
and handle diagnostics is that the latter is focused on a single diagnostic
group, like “Wall and Target Counts”; the list of “segments” returned is of mem-
bers of that group.

Following the call to handle geometry, add scores loops over these

13

segments and their associated “bins”, if any, and sets a corresponding entry in
the index parameters array. A third loop goes through all of the “problem
species”, if needed for this score, and setting the entry for each in index parameters;
if not needed, the loop is trivial. One final loop then goes through each of inde-
pendent variables for the score jscore and sets its entry in ind val from the
contents of index parameters. Once these are all set, and, if needed, “track
conversions” applied, set comp scores is finally called to update the local
copy of the output arrays.

2.4.3 Subroutine set comp scores

The subroutine itself is relatively simple. Only two arguments are needed: the
new contribution to the current score and its location in the output array. The
latter is provided by the out array index macro (see output class documen-
tation), which is constructed using tally base, tally dep var dim, and
tally tab index. The new contribution, datum, is the relevant entry in the
scoring data array multiplied by the geom mult value returned by handle geometry
(generally is = 1 except for detector based scores) and the value of estimator factors
for jscore. The seemingly complex sequence of macros needed to identify
the entry in scoring data handles the dependence on problem species and
on the rank of the dependent variable (for vector quantities, such as “momentum
change”).

For the case in which stat comp flt is false, set comp scores, up-
dates the relevant entry in the stat flt array and returns. If compression at the
flight level is turned on, the default, the subroutine first checks to see if an entry in
the ifull slot of the output arrays has been made yet. If so, that entry is updated
using the stat ptr2short flt mapping (see the stat class documentation).
If not, the size of stat flt array is incremented, the array reallocated if needed,
and the pointer arrays stat ptr2short flt and stat ptr2full flt as-
signed.

The end result of all of the calls to score test, etc. for this flight as it
is tracked through subroutine follow is effectively the quantity S1 discussed in
Sec. 2.3.

2.4.4 Post Processed Scores
For reaction type tallies, the user has the option of scoring specific reactions after
all of the flights have been run and all of the data have been accumulated. This pro-

14

cess is initiated in a section of code near the end of subroutine do flights master
(in doflights.web). The code first checks to see if any of the reaction type
tallies use the “post processing” estimator, tl est post process; if so, the
logical variable need scores is set to true. This is followed by a loop over
source groups. The “post” and “output” final conversions (see tally class docu-
mentation and tallysetup documentation) are applied in this loop; these are per-
formed even if need scores is false.

If need scores is true, the subroutines post process test scores
and post process source scores are called for each source group. The
only arguments to the subroutines are the source group number and the same
estimator factors array introduced earlier in Sec. 2.4.

The basic idea behind post process test scores is that we create a
fake particle (i.e., an instance of the particle class) having the location of each
zone in the problem space and weight equal to the number of particles in that zone
accumulated during the main run. Because the plasma parameters are constant
throughout that zone, all of the reaction rates are the same for these particles. For
some scores, such as ionization and light emission rates, the resulting tallies will
be the same as those obtained with a track length estimator.

In the original implementation, the “divide number” conversion was used to
transform the neutral flux into an average particle velocity that could be used in
this same way to obtain post-processed tallies of momentum sources. However,
that conversion was found to give incorrect results in runs with multiple source
groups. For this reason, an arbitrary velocity vector is used, rendering these post-
process tallies incorrect. The same is true for energy source tallies. Note that
even if “divide number” worked as intended, additional code would be required to
correctly post-process energy source tallies since the particle class does not have
an “energy” property that could be used to transmit the average particle energy in
the cell to the reaction scoring routines.

Post-processing is nonetheless useful for some applications. One example is
the “fixed neutral density” approach to computed a synthetic GPI diagnostic. That
fixed neutral density is obtained via a normal run of the code, using a track-length
estimator with a particular plasma background. Subsequent plasma time steps are
then run as restarts of DEGAS 2 based on the output file from that initial run, but
having the same number of flights. Since the number of flights is unchanged, the
main loop of the code does nothing. By changing the scoring of the reactions for
the light emission related tallies from track-length or collision to post-process, the
light emission rates are re-evaluated with the new plasma parameters, effectively
using the same neutral density. These restart simulations take vastly much less

15

time than the original.
The actual implementation in post process test scores is, in hind-

sight, needlessly general. For example, the particle number (and neutral flux vec-
tor) tally has had only zone number and test species as the independent variables
in virtually every known run of the code so that the explicit loops over all five
(tl rank max) possible independent variables is overkill. The only other less-
than-obvious aspect of the code is indicated by the existing comment noting that
using the lc set a macro to set the particle location is potentially time consum-
ing and unnecessary.

The post-processing of source scores is more straightforward in that they are
based on the underlying kinetic distributions. Note that a post-processing option
has not yet been set up for snapshot sources. Doing so is possible, in principle,
and may be advantageous in that the resulting sampling of the snapshot distribu-
tion might be more thorough (and, thus, more accurate) than that obtained at run
time. Subroutine post process source scores loops over all segments,
seg, of the current source group. The corresponding kseg = seg−1 and xseg
(pointer to a geometry element, such as a sector or zone) parameters are, thus, eas-
ily obtained from the segment number. Just as with a post-processed test score, a
fake particle is defined for the scoring process with weight equal to the source cur-
rent at segment seg. The fake particle’s location is intended to approximate the
average obtained by set source x in run time sampling. For surface sources,
the midpoint of the line segment is used; for volume sources, it’s the zone center.
The fake particle’s velocity is non-zero only in the case of a recombination source.
In the other cases, the source sampling process does not depend on this velocity
so that it can be safely set to zero. The fake particle is then turned into a fake flight
and passed on to the score sources subroutine.

This subroutine works in exactly the same way as during run time. The distinc-
tion arises only in the subroutine calls that set up the “data” for each source type;
in each case, the values of sampled parameters are replaced by their averages. For
example, in the case of a plate source (subroutine plate data), the parameter
wa = 3; in run time, this is the square of the unscaled velocity vector obtained
by sampling from a Gaussian distribution in each of the three spatial directions
(via rn gauss next). The parameter vpuff serves this exact same purpose in
subroutine puff data. In this case, one also needs the average velocity vector
as sampled from a cosine distribution, which is (0, 0, 8/3

√
6π). Note that this is

correct only in the default case of a pure cosine distribution; the more general
“cosine to an exponent” case is not handled. For a plate source with a specified
energy distribution, subroutine plt e bins v details uses the input param-

16

eter wa (in call from plate data) / urd (its argument list) as a switch, with a
value of the macro real unused telling it to compute the average energy from
the user specified energy distribution.

For the volume source, the user specifies the source’s average velocity, ~vsrc,
and temperature, T . The former becomes the fake particle’s velocity. Its energy is
then just 1.5T + 0.5mv2src.

Scoring the recombination source is more complex due to the associated light
emission and electron energy losses and sinks. The fake particle’s velocity is set
from the recombining ion’s flow velocity in post process source scores.
In subroutine recombination data, the electron energy source and loss rates
are evaluated, as are the wavelength and emission rate of the diagnostic lines be-
ing simulated. The ion energy lost is the thermal value analogous to that shown
above for the volume source. The flow velocity vector and magnitude are loaded
into dedicated “Maxwellian emitter” slots in the scoring data array. When
add scores is called at the end of score sources and it in turn calls handle detectors,
these data are used to compute the corresponding full emission spectrum. This
provides an enormous improvement in signal quality over a collision-based score,
making this another very useful application of post-processed scoring.

2.5 Final Processing
The expressions in Sec. 2.3 above are incorporated into subroutine stat acc,
although their equivalence is difficult to discern due to the bookkeeping asso-
ciated with the compression of the S arrays. This routine is called at various
points during the run to first accumulate “flight” data into a “fragment” array,
and then the “fragments” into the “final” array. The end result of this process is
the output grp array via the call to stat acc in the “Merge results” macro
invoked by subroutine do flights master.

As will be shown in more detail below, the mean tally values for each source
group are scaled by the total current in that group, which is obtained by summing
over the group’s Nseg,i segments:

Γi =
Nseg,i∑
`=1

Γi,`. (2.30)

In the steady state mode of operation, Γi represents a number of particles per
second; in the time dependent mode, Γi is a number of particles. Obviously, these

17

quantities are used in combining the Si1(z) and Si2(z) over source groups. But,
they are also used to scale the user-specified relative statistical weights to get the
ρj appearing in Eq. (2.1), etc. above and in setting the probabilities for sampling
flights from the source segments.

Namely, the user can specify an arbitrary set of relative weights, ri,`, for seg-
ments ` = 1 → Nseg,i in group i. A normalization factor is computed for each
source group:

rnorm,i =

Nseg,i∑
`=1

Γi,`/ri,`

 /
Nseg,i∑

`=1

Γi,`

 . (2.31)

The cumulative probability distribution used in sampling flights in group i is, e.g.,
for segment `:

pi,` =

(
`−1∑
m=1

Γi,m/ri,`

)
/

Nseg,i∑
m=1

Γi,m/ri,`

 . (2.32)

These probabilities are computed without the weight normalization factor Eq. (2.31)
since it would appear in both numerator and denominator. The actual sampling
procedure is more complex and offers additional flexibility; see the sources class
and sourcetest.

If flight j in group i is sampled from segment i, the relative weight is set to:

ρj = ri,` × rnorm,i. (2.33)

Scaling and final processing of the output arrays is carried out by a couple of
loops and subroutine calls near the end of subroutine do flights master. In
the first of the loops, the means and variances are scaled by the relative source
currents:

P i
1(z) =

Γi∑
i Γi

Si1(z) (2.34)

and

P i
2(z) =

(
Γi∑
i Γi

)2
Si2(z)(∑Ni
j=1 ρj − 1

) . (2.35)

At this point, S represents output grp, and P represents out post grp;
the latter is also summed over source groups to obtain output all.

A second set of loops performs a final scaling by the global total current,
∑
i Γi,

and a division by the time interval for time dependent runs. The latter transforms
the input “current” from a number of particles into an average number of particles

18

per second; in the interest of clarity we do not explicitly show this factor here. At
this stage, the variance is transformed into the relative standard deviation that is
used externally to quantify the accuracy of the code’s results:

P ′i2 =
(P i

2)
1/2

P 1
1

, (2.36)

and
P ′i1 = (

∑
i

Γi)S
i
1 (2.37)

Namely, the expected error in a statistical estimate of the mean µ via N sam-
ples is σ/

√
N , where σ is the standard deviation and σ2 is the variance. The

relative standard deviation “rsd” is then

rsd =
σ

µ
√
N
. (2.38)

Note that Eq. (2.5) and so on have N ↔ ∑
ρj in the denominator of the vari-

ance even though N − 1 appears in most textbook expressions. The “-1” accounts
for the fact that the same sample is used to estimate the mean µ and the variance.
While N � 1 in most DEGAS 2 runs, rendering the difference between N and
N−1 negligible, retainingN−1 yields a maximum relative standard deviation of
exactly unity when ρj ≡ 1 (a single score; see below), facilitating interpretation
of results. In the process of computing the relative standard deviation, we effec-
tively multiply the S2 by N/(N − 1). The N − 1 part of this is the denominator
in Eq. (2.35); the N ends up being cancelled by the 1/

√
N in Eq. (2.38) and does

not explicitly appear in Eq. (2.40).
The P ′i1 and P ′i2 quantities in Eqs. (2.40) and (2.39) again end up in the out post grp

array and the sum over source groups in output all.
For purposes of explication, we combine the expressions in Eqs. (2.34 - (2.39)

into:
P ′i1 = ΓiS

i
1, (2.39)

and

P ′i2 =

[
Γ2
iS

i
2/
(∑Ni

j=1 ρj − 1
)]1/2

ΓiSi1
. (2.40)

Finally, post-processed tallies are added to the out post grp array and the
“conversion” factors are applied via calls to subroutine final conversion.
The mean values in this are array are summed over groups to obtain the means in
out post all. Since the effects of the post-processing tallies on the variance

19

are not accounted for, the rsd’s from output all are copied into the “variance”
entry in out post all.

2.6 External Use of Output Arrays
The principal output of the code is contained in the mean values of the out post grp
and out post all arrays. Invariably, the relative standard deviations in these
arrays are used to characterize the uncertainty in the results, although the inclu-
sion of post-processed tallies may render those values inaccurate. To be safe, one
should use the rsd’s from “test” tallies, which are not available for post-processed
scoring, to quantify the uncertainty in a simulation.

None of the scaling factors and transformations described in Sec. 2.5 are ever
applied to the output grp array since it is used as input to restarted simulations.

This fact is forms the basis for the acc output utility, which is used to effec-
tively average over a number of simulations. A related application is to simulate
neutral transport in the presence of a time varying plasma background (since the
background is always assumed fixed in time during a given run of DEGAS 2).

The acc output utility is called after each run with the name of a “base”
output netCDF file specified as a command line argument. On the first such call,
this file is assumed to not exist. The output file specified in the degas2.in file
is read in and its output grp array is scaled by Γi for the mean and Γ2

i for the
variance. These source strengths are read in from the corresponding background
file. The resulting array is written into the output grp array in the “base” file.
Other data appear in the “base” file at this point, although they are not used.

On subsequent calls, the output grp data in the degas2.in output file
are again read in and scaled by the source strengths. The latter come from the
current background netCDF file; this is an important consideration in that they
may differ from those of the previous run in a time dependent application. At
this point, the code invokes expressions Eq. (2.8), (2.9), and (2.12), just as in the
stat acc routine; these results are placed in the output grp routine of the
“base” file, facilitating successive repetitions of this process.

With these data now representing a non-trivial product of the input data, ex-
pressions equivalent to Eqs. (2.39) and (2.40) are applied and inserted into out post grp;
these are summed over groups to fill output all. By design, the Γi factors
have already been applied. Because the background plasma data may be differ-
ent in the constituent simulations, post-processed tallies cannot be handled; the
code will throw an assertion if any are present. The conversions performed by

20

subroutine final conversions are applied, yielding out post grp and
out post all. Due to the exclusion of post-processed tallies, the variances of
both sets of output will be accurate. The resulting “base” file can then be used just
like a normal output file in conjunction with outputbrowser, geomtesta,
etc. The two are not completely equivalent since acc output scales the output grp
array and does not update the output 2D coupling array (those data can be
obtained directly from the constituent tallies via outputbrowser). The arrays
output num flights and output random seed are not utilized, either.
The total, accumulated weight is available in output weight grp.

2.7 A Single Score
In the special case of a single score ξx with weight ρx in a particular zone x,
Eq. (2.1) simplifies to

S1 =
ρxξx
ρtot

, (2.41)

with ρtot ≡
∑
j ρj . Equation (2.5) becomes

S2 =
ρxξ

2
x

ρtot
− ρ2xξ

2
x

ρ2tot
(2.42)

= ξ2x
ρx
ρtot

(
ρtot − ρx
ρtot

)
(2.43)

Then, the relative standard deviation, which is effectively
√
S2/[

√
(ρtot − 1)S1]

reduces to:

rsd =
1
√
ρx

(
1− ρx/ρtot
1− 1/ρtot

)1/2

. (2.44)

In the limit of ρtot � 1, ρx, the rsd → 1/
√
ρx. In the usual case of uniform

weighting, ρx = 1 and ρtot → N , rsd ≡ 1, as noted above.
Note, however, that when performing importance sampling, one can obtain

single scores having ρx < 1 and, thus, an rsd > 1. This is simply a reflection of
that score carrying less than average statistical weight. The rsd values in regions
of the problem space having adequate statistics can be interpreted via the same
guidelines as simulations with uniform weighting (e.g., as in Sec. 2.4 of the User’s
Manual).

21

2.8 Handling of Relative Weights for Importance Sam-
pling

The path of the relative weight factors through the code, particularly in the time
dependent case, is sufficiently complex that it warrants exposition.

2.8.1 Setting up the source (e.g., in defineback)
First, the relative weights are stored in the array source segment rel wt.
The default value of 1 is set in subroutine init wt alias in writeback.web.
Since importance sampling is rarely used, and schemes for employing it must be
adapted carefully to the problem at hand, no specific code for it is provided; the
user is responsible for inserting code that will assign the desired values.

As an example, we provide a rough description of its application to the time
dependent version of the synthetic Gas Puff Imaging diagnostic, where the objec-
tive is to ensure radially uniform sampling of particles from the snapshot source.
For simplicity, the relative weight computation is integrated into subroutine set snapshot source;
the lines establishing the default values in subroutine init wt alias are then
commented out. In set snapshot source, the problem space is divided up,
somewhat arbitrarily, into 1 cm radial bins, and the weights of the snapshot parti-
cles are accumulated into them. The total weight in each bin is then divided by the
global total to yield a fraction; this becomes the relative weight factor associated
with each bin and, thus, each snapshot particle in that bin.

As in the default version of subroutine set snapshot source, the source current
for each particle (i.e., each particle is a “source segment”) is set to the snap-
shot particle’s weight (without the relative weighting factor) and the total current,
so tot curr for the source group. The relative weight factors are then com-
bined with the currents in Eq. (2.32) to set up the sampling distribution. The idea
is that bins deeper into the plasma, where penetration is poor, will have smaller rel-
ative weights. This will cause them to be preferentially sampled, as in Eq. (2.32).
An unbiased result is achieved by reducing the statistical weight of these particles
in the main code by the same relative weight factor. The overall weight normaliza-
tion factor, so wt norm is computed (by default) from the currents and relative
weights via Eq. (2.31) in subroutine set prob alias.

22

2.8.2 Source sampling
As is noted in sources.web, subroutine sample sources, the value of
source segment rel wt, scaled by so wt norm, is assigned temporarily to
the sampled particle’s weight, pt w. In the ff copymacro (flight frag.hweb)
invoked in doflights.web, subroutine setup flight frag,this scaled rel-
ative weight is transferred into the ff float pt w entry in the ff particles float
array.

The associated ff label init macro, also in flight frag.hweb, re-
turns this quantity as a macro parameter, rel wt, and then sets the flight’s (in-
stantaneous) statistical weight, pt w, to 1. The overall weight of the flight, stat wt tot flt,
is equated to that rel wt parameter with the invocation of the macro in flight.web,
subroutine do flights; it is then globally accessible via the “stat” (sa) class
and associated common blocks. This is the weight that is passed to subroutine
stat acc to accumulate all of the scores from this flight and to obtain the to-
tal sampled weight for the source group. That is, the individual scoring routines,
such as score test, record only pt w. However, when all of those scores are
combined with those from preceding flights, they are effectively scaled by the rel-
ative weight factor via stat wt tot flt. Note that with importance sampling
the total weight in the source group is only approximately equal to the number of
flights sampled.

2.8.3 Snapshot score and PDF
Flights (in any source group) reaching the end of the time step in time dependent
runs trigger a final call to score testwith the snapshot estimator, tl est snaphshot.
This will, obviously, lead to the accumulation of data needed for tallying the snap-
shot density, etc. But, it also results in a call to subroutine build snapshot pdf
in score.web. The weight of the resulting entry in the snapshot particle dis-
tribution function, sn float pt w, is recorded there as the product of pt w
and stat wt tot flt. Once all of the particles in a source group have been
tracked, the weights of the newly created snapshot particles are scaled by the
total current in the group, so tot curr (and the rarely used, arbitrary factor
so scale), and divided by the total weight in the group, output weigh grp.
As noted above, in the subsequent time step, subroutine set snapshot source
(writeback.web) sets the source current associated with this particle to
the value of this sn float pt w entry in the snapshot arrays.

23

Chapter 3

Synthetic GPI Example

3.1 Introduction
This document guides the user through an example synthetic gas puff imaging
(GPI) simulation using XGC data. Additional details are provided to facilitate
future applications.

3.2 Geometry Setup

3.2.1 efit2dg2d

The triangular mesh used by XGC is too fine for this application, resulting in too
long run times and / or excessive Monte Carlo noise levels, as well as stressing
memory and storage resources. We instead use the efit2dg2d routine to set up
a triangular mesh over the volume of interest.

The linear dimensions of the XGC mesh triangles are roughly 1 mm. The
parameters in efit2dg2d and subsequently in definegeometry2d are set
so as to result in triangles roughly three times this size, significantly reducing
computational requirements, but still adequately resolving spatial variations in
the XGC plasma data. Namely,

1. The box size and number of flux surface contours are chosen such that the
average radial spacing between contours is roughly 3 mm. The resulting
average spacing in ψ is about double that in the XGC mesh.

24

2. The outer edge of the contour box is taken to be R = 0.926 m, large enough
to yield continuous flux surfaces up to ψ/ψsep = 1.1; the reason for doing
so is described below.

3. The average poloidal spacing along the contours (the parameter r dtheta)
is 3 mm.

4. In definegeometry2d, the area of the triangles around the gas nozzle
is set to 5× 10−6 m2, close to the area of a 3 mm equilateral triangle.

Given that the purpose of the synthetic GPI diagnostic is to generate data suit-
able for validating XGC, our approach is designed to use as much of the XGC
simulation data as is possible. In the case of the application to Alcator C-Mod,
this entails altering the way that the split limiter structure, which surrounds the
GPI gas nozzles, is incorporated into the simulation. Given the relatively short
mean free paths of the atoms and molecules in the vicinity of the plasma facing
surfaces of the limiter, the precise shape of those surfaces is unlikely to impact
the GPI light emission multiple centimeters away. Since those surfaces intersect
the outer edge of the XGC mesh and since both are nearly flux surfaces, we opt to
replace the limiter surface with a nearby flux surface; the specific one is noted be-
low. The horizontal surfaces of the limiter and the gas nozzle are specified using
engineering metrology data.

The steps described here summarize the original procedure. They would need
to be modified for a new application.

In efit2dg2d.web, set the application macro:

@m APP CMOD_GPI

Then, compile and run the code with the EFIT equilibrium for the problem:

efit2dg2d XGC_GPI_19_ex/g1100223012.01149_261

As is noted in the preamble to efit2dg2d, the spline interpolation routine
assumes that ψsep > ψaxis. This may not necessarily be the case in general, es-
pecially for NSTX. Should the spline routine generate an error, the user should
consult an EFIT expert for assistance in obtaining a file compatible with this as-
sumption.

• This yields a set of contours in the resulting wallfile.

25

• The corresponding set of polygons is in the polygons dg2d.in file.

• Both of these will be modified manually, as described in the next step.

• The stratum psi file also produced relates the polygon stratum numbers
to ψ and radial coordinates. This file is not used in this application since
interpolation of plasma data is handled in a completely different way than
in other efit2dg2d applications, such as ENDD.

• The polygons.txt file contains a point-by-point representation of the
polygons in polygons dg2d.in suitable for plotting; we will not be
using this, either.

3.2.2 definegeometry2d

The construction of the 2-D input file to definegeometry2d, xgc gpi 19 dg2d.in,
begins with the preamble. The symmetry is cylindrical. TheR-Z bounds
values are 5 cm outside those of the box for efit2dg2d, except for outer radial
boundary. The actual C-Mod vacuum vessel is at R = 1.0616 m. But, we set up
these simulations with it atR = 0.98 m to reduce the volume of the vacuum region
of the problem; this will be discussed in Sec. 3.4.3 in connection with importance
sampling. However, still need to ensure that the camera vertex at R = 1.025 m
is in the universal cell; we do this by setting the outer radius of bounds to 1.03
m. The wallfile keyword points to a modified version of the file produced by
efitdg2d, as will be explained below. Finally, the preamble section of the input
file is terminated with the end prep keyword.

The next section of the input file consists of the polygons / strata, 1 through
34, extracted from polygons dg2d.in. The polygons / strata 35 through 64
are deleted. The full set of polygons described in xgc gpi 19 dg2d.in is
depicted schematically in Fig. 3.1.

To construct the remaining polygons, we need to modify and extend the wallfile
produced by efit2dg2d, resulting in the wallfile.txt pointed to by the
wallfile keyword. Note that we do not delete the unused “walls” used in the
construction of strata 35 through 64 because the last wall, wall 64, represents the
complete outer boundary of the contour box; reconstructing it from the other walls
would be possible, but extremely tedious.

We add four more walls to this file representing the upper and lower limiter
structures, the gas nozzle, and the section of the vessel wall between the lim-
iter structures. These point lists were created via a Python based script used in

26

Exit Boundary

So
lid

 B
ou

nd
ar

y

Outer 0,4

Outer 1 Outer 2

Outer 3

64

Walls

33

34

65

66

68
67

Wall: Point
64: 138 65: 0

68: 0
65: 32

68: 23
66: 15

64: 301 66: 46

65: 48

66: 1

34: 23
(added)

34: 59
(added)

Polygons

343332311- 30 67: 10

67: 17

35

36

37

38

34: 0

34: *(83)

40

41

65: 20

66: 27

39

Figure 3.1: Schematic depiction of polygons in the definegeometry2d in-
put file, xgc gpi 19 dg2d.in. Polygon numbers are indicated in green; wall
numbers in blue. Some key points are highlighted in red as (wall number):(point
number).

27

constructing an earlier version of this geometry. Apart from their adherence to the
C-Mod metrology data the key characteristic of these point lists is a roughly 5 mm
spacing, consistent with the desired spatial resolution requirements listed above.

One other change is to add two points to wall 34 where it meets up with the
limiter structures; the radial coordinates of these points is determined by manual
interpolation. This change requires a corresponding increment to the number of
points at the top of the file. Note also the insertion of the numbers of points in the
four added walls.

The corresponding polygons are also manually constructed. The most impor-
tant of these is stratum 36, labeled as “Remaining volume around nozzle”, since it
is closest to the region of interest (the GPI camera frame). As noted above, we set
the triangle area of this volume to 5× 10−6 m2. We do likewise for the “Nozzle”
polygon, stratum 39, since it contains plasma zones over most of the toroidal ex-
tent of the problem. The limiter halves and the volume behind the nozzle are less
interesting, so we increase the triangle area to 5 × 10−5 m2. Note also that all of
the solid polygons are at the end of the file to allow the ucd plot post-processor
to work as intended.

Before running definegeometry2d, it must be compiled with the detector setup
routine, contained in cmodgpi camera4.web, specifying the GPI and APD
views. Note that the GPI camera is located at φ = 33◦. From your run directory:

cp XGC_GPI_19_ex/cmodgpi_camera4.web ../src/usr2ddetector.web
gmake definegeometry2d
definegeometry2d XGC_GPI_19_ex/xgc_gpi_19_dg2d.in

The end result of this process, apart from the obvious geometry netCDF file,
is a triangulation of the volume. To facilitate interpolation of the XGC data onto
these triangles, we first extract them from the polygon netCDF file produced by
definegeometry2d:

poly_to_tri XGC_GPI_19_ex/gpi_poly_2d.nc

The poly to tri routine produces the same sort of “node” and “element”
files used by XGC. One difference is that the specification of the “element” file as
defined in connection with the Triangle code allows for one or more floating
point “attributes” to be associated with each element. We take advantage of that
capability by adding a column at the end of the line containing the zone number
associated with each triangle; this is formatted as a floating point number so as to
be consistent with the Triangle code specification. In the 2-D case, the zone
number is the same as the element number; this is not the case for 3-D.

28

Three Dimensional Geometry

The procedure for generating the 3-D geometry is very much the same. In the
preamble of the definegeometry2d input file, xgc gpi 19 dg3d.in, the
symmetry becomes cylindrical section, and we add the toroidal extent,
going from −90◦ to 40◦, to the bounds keyword.

The toroidal domain is divided much as in experimental GPI applications, with
the resolution being greatest at the gas source and decreasing away from it. The
toroidal range is chosen so as to encompass the full path of the camera view. The
toroidal discretization is specified via the y values command and is shown in
Fig. 3.2; the XGC planes will be discussed in Sec. 3.3.1.

In the polygon construction section, the limiter sections and nozzle are solid
only over a range of toroidal angles, as is indicated in phi values.txt and
depicted schematically in Fig. 3.2.

The toroidal boundary conditions are specified via the y min zone and y max zone
keywords. We use mirror for both, even though this is not physical. While an
exit boundary would be preferable here, that is not an option with these com-
mands, which only require the user to specify a “material”. Moreover, the recy-
cling coefficient of that material is hard-coded to unity in definegeometry2d.
Since the path of the camera chords extends in both directions well away from the
gas source, we do not expect these boundary conditions to affect the results.

definegeometry2d does not need to be recompiled, assuming that cmodgpi camera4.web
remains as usr2ddetector.web:

definegeometry2d XGC_GPI_19_ex/xgc_gpi_19_dg3d.in

Note that this takes significantly longer to run than the 2-D case, perhaps 4 - 5
hours.

Even though the triangulation is the same as in 2-D, the associated zone num-
bers differ, as was noted above. Consequently, we label the polygon netCDF file
with “3d” and, thus, the Triangle files as well:

poly_to_tri XGC_GPI_19_ex/gpi_poly_3d.nc

3.3 Plasma Setup

3.3.1 Interpolation of XGC Data in the Poloidal Plane
The first step in setting up the plasma background for DEGAS 2 is to interpolate
the XGC plasma data at each of its toroidal planes from its triangular mesh to

29

Gas Pu�

XGC Planes

DEGAS 2
Toroidal
Zones

Split
Limiter

Figure 3.2: Schematic depiction of the toroidal discretizations in XGC and DE-
GAS 2. The magenta lines correspond to the 16 XGC toroidal planes; the thicker
ones correspond to the planes used in the DEGAS 2 model. The colored sec-
tions represent the DEGAS 2 toroidal zones, corresponding to the values in
phi values.txt. The 10◦ slices at either end represent the toroidal bound-
aries for the problem; “mirror” boundary conditions are applied here. By design,
the location of the gas nozzle is chosen to coincide with one of the XGC planes.
The colors of the sections have no particular meaning.

30

the one constructed with definegeometry2d. This is done with the Python
script xgc1 gpi plasma v6.py. The script requires four arguments on the
command line:

1. The directory containing the H5 files directory, which in turn has the
XGC plasma files. Since there may be hundreds of these files, placing them
in a subdirectory is convenient.

2. The name of the XGC plasma file to be processed; this represents a single
XGC time slice. Note that these are XGC1’s f3d output files and are pro-
duced in binpack format with a .bp extension. To simplify the task of
working with them in Python, they have been converted to HDF5 format
using the bp2h5 utility. The integer between the f3d and h5 in the file
name is the XGC output file number.

• In this run, the XGC variables sml dt = 9.4×10−8 s and diag 3d period
= 2 (by default this is equal to the input parameter diag 1d period)
so that each file corresponds to 1.88× 10−7 s.

• This run, ti267 cmod IP 08, had 484 output files, corresponding
to 968 total XGC steps.

• Since the plasma variations over the first 100 files are small, the syn-
thetic diagnostic is started at file number 101, with file 100 used for
initializing the neutral distribution, see Sec. XX.

3. The directory and root file name for the target triangulation onto which the
XGC data will be interpolated; the script will add .ele and .node to the
root file name.

4. The directory to be used for the output text files.

For this example,

XGC_GPI_19_ex/xgc1_gpi_plasma_v6.py XGC_GPI_19_ex/ xgc.f3d.00100.h5
XGC_GPI_19_ex/gpi_poly_2d XGC_GPI_19_ex/

The script loads the XGC’s full triangular mesh via the xgc.py module (pro-
vided as part of this example). The target triangulation for DEGAS 2 is then read
in from the .ele and .node files. Python and NumPy tools are then used to
set up the interpolation of the node-based XGC data onto the triangle centers, as

31

is required by DEGAS 2 (all quantities are constant over a triangle / zone). This
yields a set of “barycentric coordinates” that can then be used to perform the in-
terpolation from the XGC mesh to DEGAS 2 mesh in a single expression.

The script reads in the requisite XGC plasma data from the file and then carries
out the interpolations with these adaptations:

• The ion density is set equal to the electron density.

• The minimum density is 1015 m−3.

• For both the electrons and the ions, an average temperature is computed via:

T =
2

3
(E‖ + T⊥ −

1

2
mv2‖), (3.1)

where E‖ for electrons is e E para in the f3d file, likewise e T perp
→ T⊥ and e u para→ v‖. Analogous associations are made for ions.

• The minimum temperature is 1 eV.

• For the ions, the parallel velocity is also written out for use in the DEGAS
2 simulations.

• To get axisymmetric values for all plasma parameters, we average over all
toroidal planes.

For this XGC run (and all of the others considered in the development of the
synthetic diagnostic), sml wedge n = 2 so that the 16 toroidal planes in the
file occupy only half of the torus and each toroidal division is 11.25◦ wide; see
Fig. 3.2. Only seven of the XGC planes are needed to span the DEGAS 2 zones
crossed by the camera view. The mid-point of these planes is aligned with the
gas nozzle at φ = 18.48◦. Arbitrarily, we take XGC plane number five as the
first of the seven planes, going clockwise in the figure. Separate files are written
out for each toroidal plane, with the plane number incorporated into the file name,
e.g., plasma file 3.txt. The plasma data are written out in defineback’s
“Tabular Format”. In principle, other formats can be used if appropriate modifi-
cations are made to the get n t routine.

An eighth file, plasma file axi.txt, contains the axisymmetric values
in the same format. A key difference between this and the other files is that the
minimum density and temperature are reduced to zero. Since negative axisym-
metric plasma data are extremely unlikely, we do not foresee these minima being

32

enforced in DEGAS 2 triangles that overlap XGC nodes. Consequently, we will
subsequently use the appearance of zero values in this file to identify triangles that
are outside the XGC mesh. Some other more direct mechanism for labeling these
triangles, e.g., in a separate file, could in principle be developed should the need
arise.

3.3.2 Field Line Interpolation
Were the DEGAS 2 and XGC toroidal discretizations identical, constructing the
DEGAS 2 plasma background from the files written in the previous step would be
trivial. However, the requirements of the algorithms in the two codes are funda-
mentally different and, thus, so are the toroidal grids. To map between the two, we
interpolate the data along a field line. The fundamental physical principle is that
the variations of the plasma parameters along a field line should be much smaller
than those in the directions perpendicular to it.

Initial treatments did exactly this. However, in one NSTX simulation, the
XGC data exhibited greater density variations along a flux surface than along a
field line, invalidating the simple procedure. The solution is to instead interpolate
the difference between the local values and the axisymmetric one, then add the
axisymmetric value back.

The fundamental equation used for field line following is:

d`

B
=
dx

Bx

=
dy

By

=
dz

Bz

. (3.2)

Or, in cylindrical coordinates:

dR

BR

=
dZ

BZ

=
Rdφ

Bφ

. (3.3)

This leads us to the actual expressions for integration along a field line:

dR

dφ
= R

BR

Bφ

, (3.4)

dZ

dφ
= R

BZ

Bφ

. (3.5)

The magnetic field line structure is derived from the EFIT equilibrium. First,
the poloidal flux and other data are fit with spline functions by subroutine init psi interp

33

in psiinterp.web. This routine calls subroutine test interp upon com-
pletion to compare spline fits with the actual values of the equilibrium quantities.
Errors in the spline fits are computed, although no feedback is provided to the
user. These should be examined in cases exhibiting unexpected behavior. The
spline fits form the basis of subroutine bvec interp, which returns the mag-
netic field vector at the input R and Z.

Subroutine follow field, also in psiinterp.web, uses Eqns. (3.4) and
(3.5) to take a small step along a field line through an input range of toroidal angle,
∆φ. The subroutine uses a Runge-Kutta scheme of first, second or fourth order,
as determined from its first argument. For this application, second order is used;
this is specified via the rk order macro in the preamble of xgc1 gpi.web.
A detailed convergence test was performed for all three orders, examining the
scaling of the errors with the step size. The first and second order integrations
scaled as expected; the fourth order did not. Integrations over a long distance, 10
times around the torus, confirmed these findings.

Note that the experimental GPI systems are designed for a particular orienta-
tion of the magnetic field line, as well as being optimized for a specific field line
pitch. Since the geometry of these simulations mimic that experimental configu-
ration, the user needs to ensure that field line direction used in the XGC run is the
same as in the experiment, or at least anti-parallel to it.

The relative arrangements of the XGC toroidal planes, the DEGAS 2 toroidal
zone centers, and the boundaries of the problem, both toroidally and vertically,
lead to three different situations, as is depicted in Fig. 3.3.

1. Integration in both directions remains within the bounds of XGC mesh sub-
set, yielding two XGC data values and distances to both ⇒ we can legiti-
mately interpolate between the two.

2. Integration remains within the box in only one direction. Given the notion
that plasma parameters, including those in “blobs”, should be roughly con-
stant along field lines and that our interpolation distances short compared
with the parallel connection length, we just use the plasma value that we
have and use it directly.

3. Integration misses the XGC planes in both directions. We use the axisym-
metric value in this case.

Once the geometry has been set up, the required interpolation factors for each
DEGAS 2 zone can be determined and will not change. Hence, we created the

34

φ →

Z
→

B

XGC DEGAS 2

1

2

3

Figure 3.3: Schematic depiction the field line interpolation scheme. The magenta
lines represent the XGC toroidal planes. The dashed green lines represent the
centers of the DEGAS 2 toroidal divisions. The blue lines represent the local
magnetic field lines.

XGC interpolation class, xgc1interp.hweb, to hold that information in a
netCDF file; the constituent arrays are documented at the end of the file. Once
this file has been created, it can be read in when processing subsequent time steps,
saving considerable time.

3.3.3 defineback

The get n t subroutine for the synthetic GPI example is in xgc1 gpi.hweb
(included with the DEGAS 2 distribution), which should be copied to usr2dplasma.web
and compiled into defineback. Note that this routine relies on the “XGC1 in-
terpolation” class (xgc1interp.hweb and xi common in the code). Since
this is presently the only invocation of this class in DEGAS 2 and since the
Makefile.depends file generally does not contain entries for the (problem
dependent) usr2dplasma.web file, the user should execute gmake depend
in the src directory before compiling defineback. As with virtually all cus-
tom get n t subroutines, the argument to the plasma file is a string. In this
case, it consists of the paths to three files:

1. The list of plasma files generated by the Python script, as described above in

35

Sec. 3.3.1. The format of this list is prescribed at the top of xgc1 gpi.web.

2. The EFIT g-file; this should be the same one used in Sec. 3.2.1.

3. The netCDF interpolation file. If this file does not yet exist, the interpolation
factors will be computed along the way and the file written out. If it does
exist, the factors will be read in from the file. For axisymmetric simulations
(the number of files specified on the first line of the plasma file list is 0),
these steps are skipped completely, although the subroutine still expects to
find a string here.

We use generic file names for the plasma file coming from the Python script so that
they will be overwritten with each time step. Consequently, the plasma file
argument also remains the same in going from one XGC time step to another. In
fact, the only argument in the input file that varies is time interval.

3.4 Three Approaches to Time Variation
The contents of the remainder of the input file to defineback depend on the ap-
proach used for handling the time variation in the XGC data. To simplify progress
through this example, we will present them in order of increasing complexity. The
designations of the methods is that used in the synthetic GPI paper.

3.4.1 Frozen Plasma Fluctuations (FPF)
A separate, steady state run is performed on each XGC time slice; this assumes
that the neutral transport time scales are much faster than those of the plasma tur-
bulence. This mode of operation is also the most like that used in experimental
GPI simulations. Since the DEGAS 2 runs are all steady state, the time interval
keyword is not needed in the defineback input file, so the same file, xgc gpi 19 db ss
(xgc gpi 19 db 3D ss for 3-D) can be used for each time slice. Note that the
desired number of flights is specified here so as to avoid having to manually set
the number in the background netCDF file.

The baseline input file for tallysetup, tally xgc gpi v2.input is
used; it contains tallies for the avalanche photo-diode arrays (APD), but not the
GPI image. No other special considerations are needed for flighttest or
outputbrowser.

36

https://doi.org/10.1063/5.0002876

We do need to set the appropriate macro switches in postdetector. Edit
the lines:

@m APP NSTX

@#if 0

to read:

@m APP CMOD_MID

@#if 1

The first enables device specific macro settings later on, e.g., for specifying the
target plane. The latter toggles between the full camera view and a subset used for
testing. Note that with the implementation of compression of the zone frags
array, the code runs quickly even with a full frame. The same detector setup
routine compiled into definegeometry2d, cmodgpi camera4.web, is still
needed as usr2ddetector.web.

The 2-D FPF simulation is sufficiently quick and simple that we suggest run-
ning it as an interactive batch job with the sample batch script, gpi script fpf int.
A few details to note:

• The parallelized flighttest executable has been renamed flighttest mpi
to avoid successive recompiling to switch between scalar and parallel ver-
sions.

• The script assumes that the Camera FPF directory already exists.

• The short file a no serves two purposes in this script. First, it provides
the “no” response to force outputbrowser to exit its interactive mode
following its execution of the commands in its input file. Second, the prior
existence of this file effectively aborts the batch job. As is pointed out in the
script’s comments, doing so prevents uncontrolled restarts of the batch job,
which can overwrite “good” output files with problematic ones. Be sure to
delete a no before running this script.

For the purposes of these examples, we use XGC files 301 – 313 since they contain
a relatively large scale instability that can be easily seen in the GPI images; we
will discuss this further in Sec. XX on visualization. The GPI image for each step

37

is generated by postdetector and stored in the Camera FPF directory, as are
the APD signals. Note that little use of the latter has been made to date. Thirteen
steps are used to demonstrate the integration over multiple steps described in the
paper to improve statistics (for the time dependent approach) and to achieve an
effective frame rate comparable to that of the GPI camera. The resulting image
is similar to that of the individual frames. The acc output code used for the
integration takes advantage of the same machinery used for restarts to combine
the contents of one DEGAS 2 output netCDF file with another one from the same
problem; see the premable to acc output for additional details.

Once the proper operation of the executables involved in the batch script has
been established, the executables defineback, outputbrowser, postdetector,
and acc output can be compiled with DEBUG = no. For flighttest, par-
allelization should be turned on with MPI = yes and the MASTER_SAMPLE
sample switch should be left with the default no. The two exceptions to these
guidelines are that flighttest must be run in scalar mode for the Fixed Neu-
tral Density approach, Sec. 3.4.2, and that MASTER_SAMPLE should be yes for
flighttest in the time dependent case, Sec. 3.4.3.

3.4.2 Fixed Neutral Density (FND)
A single steady state run is performed on a representative, axisymmetric back-
ground plasma to obtain a 3-D neutral background that will be held fixed in
time. With that in hand, the XGC plasma data for each time step are read in
via defineback, just as in the FPF mode. The principal difference is that
flighttest is run in restart mode with the same number of flights as in the ini-
tial neutral background run. Since no additional flights are requested, the code’s
primary loops are bypassed. In this case, however, all of the light emitting re-
actions are set up to be computed via the post-processing estimator. The emis-
sion rates are then appropriate to that particular time step, but the neutral den-
sity is that corresponding to the initial run. These runs should be performed with
flighttest in serial mode, compiled with MPI = no. The time stepping por-
tion of this method is sufficiently quick that working in 3-D is practical even for
an example calculation; the procedure for generating it was outlined in Sec. 3.2.2.
See also the dedicated input file, degas2 FND.in.

In the synthetic GPI paper, the plasma used in producing the fixed neutral
background was taken from a time step in the middle of the XGC run; this matters
since the plasma profiles evolve during the XGC simulation. That is not the case
for this much shorter example, so we simply use the first step from the set that we

38

https://doi.org/10.1063/5.0002876

will be working with:

XGC_GPI_19_ex/xgc1_gpi_plasma_v6.py XGC_GPI_19_ex/ xgc.f3d.00301.h5
XGC_GPI_19_ex/gpi_poly_3d XGC_GPI_19_ex/

As described in Sec. 3.3.1, this writes to the output directory (XGC GPI 19 ex
here) a separate text file for each XGC poloidal plane, plus one with the ax-
isymmetric values. To avoid confusion between the “neutral background” and
the plasma background, we will henceforth refer to the former as “NB”.

We only need the axisymmetric file in producing the NB, so this initial defineback
input file points to plasma file list 2d.txt. It also includes source segment iy
keyword required for 3-D:

defineback XGC_GPI_19_ex/xgc_gpi_19_db_FND_init

We specify here the target number of flights, 8 × 106, since manually editing the
3-D background netCDF file is not all that easy.

The same input (and output) file for tallysetup is used in both the initial
NB run and the subsequent restart steps. The most relevant difference between
this input file and the ones used with the other synthetic GPI time stepping meth-
ods is that the post-processing estimator is selected for the ionize, ionize
suppress, dissociation, and test ion reaction groups (see the docu-
mentation for tallysetup). Doing so violates the general requirement of using the
collision estimator for the “test ion” group, causing an assertion to be thrown:

Assertion failed (tallysetup.web):
’ Test ions must use collision estimator’==’

The D+
2 densities are properly computed during the main loop of flighttest

so that using the post-processing estimator to then determine the associated light
emission is not a problem. The user can either type “go” in response to the asser-
tion (four times), or compile tallysetup with DEBUG = no, bypassing the
assertion machinery.

The full, 3-D run of flighttest with 8 × 106 takes about an hour with
∼ 102 cores. Once complete, run postdetector to generate a corresponding
camera image; we will need this for normalizing the actual time dependent im-
ages. In a typical application, as in the synthetic GPI paper, one would instead
normalize to the initial, quiescent time slices from XGC. Since these time slices
are far from quiescent and very similar to each other, normalizing to the first of
them would remove much of the structure we wish to see.

Rename the output file so that it is not accidentally overwritten:

39

https://doi.org/10.1063/5.0002876

mv degas2_xgc1_cmod_out.nc degas2_xgc1_cmod_NB.nc

Likewise, copy the postdetector file to the output directory to be used for
this run (create it if it does not already exist):

mv degas2_xgc1_cmod_out_post.nc
Camera_FND/degas2_xgc1_cmod_out_post_NB.nc

As in the FPF run, the batch job is sufficiently quick that it can be run inter-
actively, this time on a single processor, via the script gpi script fpf int.
Some details:

• Again the file a no is used to prevent unwanted restarts and must be deleted
before starting the script.

• The initial call to definebackwill take longer than subsequent ones since
the interpolation file (xgc1 int 19.nc; see Sec. 3.3.2) will be generated
(the run for the NB was on an axisymmetric plasma).

• The same set of XGC files, 301 – 313, is used.

• This same defineback input file, xgc gpi 19 db 3D ss could be used
to perform a 3-D version of the FPF run.

• All of these invocations of flighttest are “restarts” with the same num-
ber of flights as in the NB run. Consequently, the flag so restart in the
background netCDF file needs to be changed from its default value of 0 to
1. We do this via a few editing commands since defineback offers no
way to do this via its input file.

• These editing commands could in principle be collapsed into a single com-
mand via “pipes”, but have been separated to minimize the likelihood of
errors.

• The postdetector output files are copied to the Camera FND direc-
tory.

Note that the acc output code is not used in this application to integrate
over frames since the statistical uncertainty in each frame is exactly the same. We
instead perform simple averages over frames in the visualization stage, Sec. XX.

40

3.4.3 Time Dependent Neutral Density (TDND)
We will initially go through this in 2-D, which allows us use the same input file as
the FPF mode:

cp XGC_GPI_19_ex/degas2_FPF.in degas2.in

Since we already have the geometry file, we can proceed to set up the snapshot
distribution corresponding to the initial time. First, interpolate the XGC data onto
the DEGAS 2 triangles:

XGC_GPI_19_ex/xgc1_gpi_plasma_v6.py XGC_GPI_19_ex/
xgc.f3d.00301.h5 XGC_GPI_19_ex/gpi_poly_2d XGC_GPI_19_ex/

Then, run defineback with the dedicated input file for the initialization
run:

defineback XGC_GPI_19_ex/xgc_gpi_19_db_init

Note that we are using the 2-D (axisymmetric) plasma file here. The end of the
time interval, 1.8802 × 10−7 s, will become t0 in the subsequent time dependent
run. The critical keyword in this input file is time initialization; this
sets the so time initialization flag in the sources class and in the “Time
Dependence” section of the User’s Manual. The number of flights needed to ade-
quately populate the snapshot distribution has already been set in this input file.

Again, because this run uses the same geometry (and problemsetup input
file) as the FPF part of the example, the tallysetup netCDF file is the same.
No harm can come from rerunning tallysetup at this point, however.

Next, the user need only run flighttest to create the snapshot distribution.
To prevent the snapshot file from being accidently overwritten, it has been copied
to sn xgc1 cmod init.nc. Should the user want to restart the time dependent
run from the beginning, it can be copied back to the sn xgc1 cmod.nc pointed
to by the degas2.in file. The output netCDF file from this initialization run
can be used to check the statistics, etc., but is otherwise not needed for the rest of
the run.

Improving Statistics

Before beginning the actual time dependent run, we need to examine the asso-
ciated statistics, which differ dramatically from those of steady state simulations.

41

First note that the geometry of these runs has a substantial plasma-free volume be-
hind the gas nozzle. This region is dominated by slow moving molecules or atoms
that do not contribute to the GPI signal. The principal reason for including it in
the simulations is to provide a physically realistic boundary condition for atoms
returning from the plasma following a charge exchange or dissociation event. A
first step in mitigating this problem is to reduce the major radius of the vessel wall
from R = 1.0616 m to R = 0.98 m, as was noted in Sec. 3.2.2; the remaining
5 cm of space behind the gas source is more than enough to provide the desired
boundary condition. For example, a 3 eV atom (300 K D2 molecule or He atom)
needs 18 (267) time steps to traverse it.

Another confounding factor is the short mean free path for atoms heading into
the plasma, dropping from an effectively infinite 25 cm near the nozzle to between
1 and 3 cm around the separatrix. Since the separatrix is 3.7 cm from the nozzle
in this shot (at the vertical center of the GPI frame), the atoms must travel more
than one mean free path to reach the confined plasma. But, we need even deeper
penetration than this to reach the regions in which the plasma turbulence is most
active.

Two techniques are used to improve the statistics in the region of interest, i.e.,
the GPI “target plane.” The first, “suppressed absorption,” (also called “survival
biasing”) is commonly used in DEGAS 2 in connection with the atomic ionization
process. When invoked, the atoms do not undergo discrete ionization events in
which they are completely ionized in a single collision. Rather, the statistical
weight (= 1 when the particle is sampled) of the atom is exponentially reduced
along its track with a rate equal to the ionization rate. To avoid the tracking of
statistically insignificant particles, a minimum statistical weight is set. Once that
weight is reached, the decision to either terminate or continue the particles track
is made randomly with a 50% chance for each (“Russian roulette”). A typical
steady state DEGAS 2 GPI simulation employs a minimum weight of 10−3. In the
present case, however, very small weights will be the norm. To ensure that flights
can populate the inner region as fully as possible, we reduce the minimum weight
to 10−7. The impact on the run time is modest. To effect this, the user needs to set
the parameter WMIN in flight.web:

@m WMIN const(1.,-7)

Be sure to return this to the default of 10−3 for use with more standard problems.
The second technique, importance sampling, is critical for making the optimal

use of the snapshot distribution. By default, the probability for sampling a partic-
ular particle from the snapshot distribution is proportional to its statistical weight.

42

Because the cold molecules and atoms in the vacuum region have undergone little
or no ionization, their statistical weight is comparable to that of newly sampled
gas puff particles. Moreover, the neutral density there is two or more orders of
magnitude larger than in the GPI target region. Consequently, a direct sample of
the snapshot distribution would be dominated by the cold molecules and atoms
in the vacuum region. Moreover, these particles represent a simple distribution
(thermal molecules or atoms) that can be described adequately with relatively few
particles. In contrast, the particles in which we are most interested comprise the
very kinetic distribution of atoms resulting from the charge exchange reactions
and perhaps containing complex spatial variations associated with the plasma tur-
bulence.

The weighting scheme we employ in the importance sampling is designed
to yield a snapshot source consisting of a radially uniform number of particles.
First, we bin all of the snapshot particles by major radius in 1 cm wide bins. The
inverse of this distribution then provides the relative weight adjustment factors
for the particles in each bin; these correspond to the ri,l in Sec. 2.5 earlier in this
manual and are computed in subroutine set snapshot source. For example,
the less-common and lower weight particles well inside the separatrix will be more
heavily weighted, increasing the likelihood that they will be sampled. The obvious
bias that this introduces is compensated by then decreasing the statistical weight
carried by these particles during their tracks, via Eq. (2.33). The opposite is true
of snapshot particles that are sampled at larger major radius.

To enable this, the user needs to set the macro flag in writeback.web:

@m GPI_WEIGHTING 1 // Set to 1 for synthetic GPI weighting

This macro also contains code that writes out this binned distribution to a file
called snapshot rel wts for monitoring after the run. Again, since this code
is specific for this geometry, its use in other applications may cause problems; be
sure to reset the macro to its default value of 0. Once defineback is compiled
with this enabled, the snapshot source will be assigned these weighting factors.
The file doflights.web has a corresponding macro that writes out the result-
ing distribution of sampled particles to snapshot samples that can be used to
illustrate the effect of importance sampling.

Figures 3.4 and 3.5 reflect the snapshot distribution from the initialization
run, as written to snapshot rel wts, and the subsequent sampling of it, from
snapshot samples, when flighttest ran the actual first time step. The
notebook used to generate these plots, XGC GPI 19 ex snapshot samples.ipynb,
is included with the example files.

43

The left plot in Fig. 3.4 is nothing more than a pictorial representation of the
sampling process itself; alternatively, it is a plot of the spatial distribution of the
overall neutral probability distribution function. Both curves are based on the total
weight in each bin, regardless of species. The conclusion here is that the relative
weighting and sampling are both working as intended.

The right plot shows the impact of the relative weighting on the number of
particles (regardless of weight) in each bin; keep in mind that the key to reducing
the variance is to increase the number of scores, i.e., particles, assuming all of the
particles are of similar weight. The red curves depict the problematic situation
that arises with weights fixed at 1: most of the particles are D2, and the bulk of
these are in an uninteresting region. The blue curves appear to, and probably do,
sum to roughly a constant; this was the intent of the relative weight distribution.
The result is a huge increase in the number of D in the plasma volume, with no
change in total weight, and a reduction in the number of D2 in the vacuum region.
Note that we add ”1” to the D2 curves to allow plotting on a log scale since their
number goes to zero at small R.

Figure 3.5 is analogous to the left plot in Fig. 3.4, but broken down by species.
This demonstrates that the sampling procedure separately preserves the weight
distribution for each species, even though no explicit provision for doing so has
been made.

Execution

Due to the large amount of memory occupied by the snapshot distribution and
the associated source, the user should always perform time dependent runs of
flighttest compiled with MASTER_SAMPLE = yes in the Makefile.local
file, even in 2-D. This will dramatically reduce the time required for the initial MPI
broadcast to the slaves, as well as the memory they consume.

The batch script for this run, gpi script tdnd, differs from the ones for
the FPF and FND methods in that it:

• Is intended to be run purely as a batch job, i.e, not interactive.

– This is not all that critical for this example, which requires about two
hours to run.

– However, 3-D runs require additional care in setting up the processors;
see below.

– And can take days or even weeks to run the full set of XGC time steps.

44

0.85 0.90 0.95
R (m)

10 8

10 6

10 4

10 2

100

W
ei

gh
t F

ra
ct

io
n

snapshot
sampled

0.85 0.90 0.95
R (m)

10 7

10 5

10 3

10 1

Nu
m

be
r F

ra
ct

io
n

snapshot D
snapshot D2
sampled D
sampled D2

Figure 3.4: Binned probability distribution functions based on particle weight
(left) and particle number (right). Both plots contain lines for the snapshot dis-
tribution, as contained in the snapshot netCDF file, and for the distribution of
particles sampled from it prior to tracking in the main code. The decoupling of
particle number and weight apparent in the “sampled” plots is the objective of
importance sampling.

45

0.85 0.90 0.95
R (m)

10 8

10 6

10 4

10 2

100

W
ei

gh
t F

ra
ct

io
n

snapshot D
snapshot D2
sampled D
sampled D2

Figure 3.5: Binned probability distribution functions based on particle weight,
separately for D atoms and D2 molecules.

46

• Keeps track of the physical time step, needed for the defineback input
file.

– The T_ZERO set at the top of the script is the starting time of the run,
representing the end of the initialization time step.

– Consequently, T_END is initialized to this same value; at this point,
this is also the time associated with the snapshot particles from the
initialization run.

– At the beginning of a time step, T_START is set to T_END,

– Then T_END is computed from T_ZERO, the time step size, DT, and
the step number, INT_STEP, which is read from the file name.

– Note that in this case, we subtract 300 from the step number since the
first file is for step number 301.

– The values of T_START and T_END are written into the defineback
input file via a sed command which operates on a “base” version of
the input file, xgc gpi 19 db base.

• Compiles diagnostic information on the snapshot distribution and on the
sampling thereof.

– These files are as described above in Sec. 3.4.3.

– But, are concatenated into a single file of the same name in the Camera TDND
directory with the step number separating each section of the output.

• The number of particles in each snapshot file is compiled in the file snap flights.txt
in the Camera TDND directory.

• As in the FPF run, the final section of the script integrates the output over 13
time steps using base xgc1 cmod out.nc to contain the intermediate
output.

– One difference is that we also store every thirteenth snapshot file,
labeled with the step number, in the Camera TDND directory as a
checkpoint and for post-run analysis.

47

Restarting

When running hundreds of XGC time steps in total, one may need to break them
up into multiple batch jobs to stay within the constraints of the batch system. The
best point to stop a job is at the end of a “thirteenth” step since the script will
automatically have saved a copy of the last snapshot file, reducing the likelihood
of it being deleted or overwritten. Otherwise, one just needs to ensure that the
snapshot and base output netCDF files from the end of the last time step are valid.
The other things one needs to do:

• Set the step number.

– Namely, modify the list of XGC files so that it begins with the next
step. E.g., do something like:

XGC1filelist=‘ls -1 $XGC1dir/H5_files/xgc.f3d* | tail -163‘

where the “163” was chosen to yield the desired step.

• Set T_END to the time associated with the particles in the snapshot netCDF
file.

• Delete the a_no file, as well as the various standard output and error files
for the batch script and the various executables.

Should the job be interrupted in the middle of a step, the user will need to
examine the various files and make whatever adjustments are needed to allow the
batch job to be restarted from the beginning of that step.

Differences in 3-D

The memory and storage requirements in 3-D are, not surprisingly, greater than
in 2-D. The use of the MASTER_SAMPLE option minimizes the load on the slave
processes. In the original set of TDND runs, extra steps were taken to ensure that
the master process had access to adequate memory. First, the script gen_host_file
(included in the example directory) was developed to provide detailed control over
the cores on the master node. In particular, this script removes 5 cores from the al-
located list on that node so that the memory associated with those cores can be uti-
lized by the master process. Accordingly, the variable NPROCS in the batch script
needs to be 5 smaller than the number of cores requested by the SBATCH com-
mand at the top of the script. The name of the file created by gen_host_file
is passed on to mpirun via its hostfile argument. E.g.,

48

HOST_FILE_NAME=‘gen_host_file‘
ARGS="--hostfile "$HOST_FILE_NAME

The batch script gpi script 20 illustrates the practical application of this
tactic. The user will need to adapt the details according to the size of the run to be
performed and available resources.

3.5 Visualization and Post-Processing
The first and simplest visualization of the camera frames produced by post-detector
is demonstrated in the three Jupyter notebooks included in the example, one for
each approach: XGC GPI 19 ex FPF.ipynb, etc. These include overlaid sur-
faces representing the separatrix and XGC’s outer boundary. The movies can be
written to an mp4 file by using the save command of the matplotlib.animation
package. Similar steps can be taken to generate an analogous movie from the XGC
output files, as in the synthetic GPI paper.

The quantities used to characterize the turbulence, auto-correlation time, cor-
relation lengths, etc., should be computed from these frames using the exact same
methods that are applied to the experimental data. Doing so ensures an “apples-
to-apples” comparison.

49

https://doi.org/10.1063/5.0002876

Contents

1 Geometry 1

2 Scoring 2
2.1 Introduction . 2
2.2 Basic Expressions . 3
2.3 Accumulating Data . 5
2.4 Implementation in the Code . 7

2.4.1 Sector and Diagnostic Scoring 9
2.4.2 Subroutine add scores 12
2.4.3 Subroutine set comp scores 14
2.4.4 Post Processed Scores 14

2.5 Final Processing . 17
2.6 External Use of Output Arrays 20
2.7 A Single Score . 21
2.8 Handling of Relative Weights for Importance Sampling 22

2.8.1 Setting up the source (e.g., in defineback) 22
2.8.2 Source sampling . 23
2.8.3 Snapshot score and PDF 23

3 Synthetic GPI Example 24
3.1 Introduction . 24
3.2 Geometry Setup . 24

3.2.1 efit2dg2d . 24
3.2.2 definegeometry2d 26

3.3 Plasma Setup . 29
3.3.1 Interpolation of XGC Data in the Poloidal Plane 29
3.3.2 Field Line Interpolation 33
3.3.3 defineback . 35

50

3.4 Three Approaches to Time Variation 36
3.4.1 Frozen Plasma Fluctuations (FPF) 36
3.4.2 Fixed Neutral Density (FND) 38
3.4.3 Time Dependent Neutral Density (TDND) 41

3.5 Visualization and Post-Processing 49

51

	Geometry
	Scoring
	Introduction
	Basic Expressions
	Accumulating Data
	Implementation in the Code
	Sector and Diagnostic Scoring
	Subroutine add_scores
	Subroutine set_comp_scores
	Post Processed Scores

	Final Processing
	External Use of Output Arrays
	A Single Score
	Handling of Relative Weights for Importance Sampling
	Setting up the source (e.g., in defineback)
	Source sampling
	Snapshot score and PDF

	Synthetic GPI Example
	Introduction
	Geometry Setup
	efit2dg2d
	definegeometry2d

	Plasma Setup
	Interpolation of XGC Data in the Poloidal Plane
	Field Line Interpolation
	defineback

	Three Approaches to Time Variation
	Frozen Plasma Fluctuations (FPF)
	Fixed Neutral Density (FND)
	Time Dependent Neutral Density (TDND)

	Visualization and Post-Processing

